In the wake of 9/11, America responds with fear and ruthlessness to the horrors of the terrorist attacks. As the wheels of a vast machine begin to turn, those most vulnerable to wrongful prosecution are the misfits, the outsiders, the marginalized. Fergus Maloney is just such a misfit. An illegal Irish immigrant to New York City, Fergus appears to predict the attacks and is rendered to Guant├ínamo Bay for interrogation. Here he will face off against Brandon Zeiss, an ambitious young officer tasked with forcing Fergus to confess. Only one woman – a New York corporate lawyer named Maria Da Silva – can save Fergus now. To do so, she must risk everything she has fought her whole life to attain.

The Fortune Teller is due for release in 2016

As with birth rates, we use data for 4 categories of countries from 1990 to 2015 (100 observations total). We have two explanatory variables, AGE and Y, where AGE is defined as the percentage of the population aged over 65 and Y is per capita GDP.

After eyeballing the scattergrams, we test the following functional form:

d = (minY^a)/Y^a * (1/AGE^g)

Where minY is the constant equal to the smallest value of Y in the series.

Logarithmic transformation gives:

ln(d) = ln(minY^a) – a*ln(Y) – g*ln(AGE)

which we test on the data using OLS. Here are the results:

Adjusted R square: 75.191

Intercept coefficient: 7.37384
t-Stat: 20.4011

Y coefficient: -1.01444
t-Stat: -13.1059

AGE coefficient: 2.0097
t-Stat: 11.5208

The estimated intercept is a good, but not perfect, approximation of ln(minY^a)

Here are the fitted against actual values of the scattergram for death rate against per capita GDP:

fitted-death-rates-against-actual-values

While the results are not as good as with the birth rates calculations, it is nevertheless a good enough fit and the explanatory variables have a strong enough confidence factor to be usable in our estimations.

×

We begin by examining the scatter of data for 100 observations of per capita GDP and per capita emissions for 4 categories of countries, over 25 years (1990 – 2015).

The scatter suggests a cubic functional form, so we test:

GHG = a + b*Y + c*Y^2 + d*Y^3

where GHG are per capita emissions of GHG, and Y is per capita GDP.

The results from OLS regression are:

Adjusted R square: 0.980438073

coefficient a: 1090
t-stat a: 3.06

coefficient b: 0.709310153
t-Stat b: 8.241453

coefficient c: -0.0000047025
t-Stat c: -1.01233

coefficient d: -0.000000000105314
t-Stat d: -1.47005

While the t-scores on the squared and cubed terms are low, the number of observations are also limited.

Here is the plot of the fitted against actual values:

fitted-emissions-to-gdp-against-actual-values

×